- 7. (a) Describe by Drude model the response of a solid to an oscillating electromagnetic field and obtain an expression for the dielectric function in terms of the plasma frequency.
 - (b) What do you mean by optical loss and gain?

Unit IV

- 8. (a) Explain four point probe method for determination of resistivity of a semiconductor.
 - (b) Write a short note on hall mobility.
- 9. (a) Explain design and fabrication of quantum wires.
 - (b) Give practical examples of quantum dots and wires. 5

No. of Printed Pages: 04 Roll No.

18A9

B. Tech. EXAMINATION, 2022

(Second Semester)

(C Scheme) (Main & Re-appear)

CSE

PHY109C

Semiconductor Physics

Time: 3 Hours [M

[Maximum Marks: 75

Before answering the question-paper candidates should ensure that they have been supplied to correct and complete question-paper. No complaint, in this regard, will be entertained after the examination.

Note: Attempt *Five* questions in all. Q. No. 1 is compulsory. All questions carry equal marks.

1.	(a)	What do you understand by Fermi level?	
	()	Explain its significance in metal and	
		semiconductors. 3	
	(b)	What is significance of negative effective	
		mass?	
	(c)	What is meant by potential barrier across	
		a PN junction ?	
	(d)	What are excitons?	
	(e)	What are quantum dots?	
Unit I			
2.	(a)	Discuss Kronig-Penney model for the	
		energy band structure of solids and show	
		that the energy spectrum of electrons	
		consist of a number of allowed energy	
		bands separated by forbidden regions. 10	
	(b)	Explain the concept of density of states	
		for a free electron gas.	
3.	(a)	What is the concept of effective mass?	
		Discuss what information does one obtain	
		about the effective mass of electrons	
		moving in a periodic potential. 10	
	(b)	Describe phonons. 5	
M-18A9		2	

Unit II

- 4. (a) Distinguish between intrinsic and extrinsic semiconductors. Obtain an expression for the carrier concentration for an intrinsic semiconductor.
 - (b) Compare the density of charge carrier in a pure silicon crystal at two temperatures 27°C and 57°C eg. for Si in 1.1 eV. 5
- 5. (a) Explain the term depletion layer across PN junction. Obtain the expression for the width of the depletion layer in terms of the impurity concentrations and barrier potential.
 - (b) Explain, how Ohmic contact are made. 5

Unit III

- 6. (a) Describe Fermi's Golden rule. 8
 - (b) Explain under what conditions stimulated emission of radiation can take place?What are characteristics of such radiations?

(1-04/9) M-18A9 3 P.T.O.